Neural Network Based Steganalysis Framework to Detect Stego-Contents in Corporate Emails

نویسندگان

  • P. T. Anitha
  • M. Rajaram
  • S. N. Sivanandham
چکیده

Today, email management is not only a filing and storage challenge. Because law firms and attorneys must be equipped to take control of litigation, email authenticity must be unquestionable with strong chains of custody, constant availability, and tamper-proof security. Information Security and integrity are becoming more important as we use email for personal communication and business. Email is insecure. This steganalysis framework checks the inbox content of the corporate mails by improving the S-DES algorithm with the help of neural network approach. A new filtering algorithm is also developed which will used to extract only the JPG images from the corporate emails. This frame work developed a new steganalysis algorithm based on neural network to get statistics features of images to identify the underlying hidden data. The Experimental results indicate this method is valid in steganalysis. This method will be used for Internet/network security, watermarking and so on.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Neural Network Based Algorithm for Detecting Steganography Content in Corporate Mails: a Web Based Steganalysis

Steganography refers to information or file that has been concealed inside a digital media. Steganalysis is used to detect and/or estimate potentially hidden information from observed data with a little or no knowledge about the steganography algorithm and its parameters. Current trend in steganalysis seems to suggest two extreme approaches (a) little or no statistical assumption about the imag...

متن کامل

Steganalysis of embedding in difference of image pixel pairs by neural network

In this paper a steganalysis method is proposed for pixel value differencing method. This steganographic method, which has been immune against conventional attacks, performs the embedding in the difference of the values of pixel pairs. Therefore, the histogram of the differences of an embedded image is di_erent as compared with a cover image. A number of characteristics are identified in the di...

متن کامل

A Novel Convolutional Neural Network for Image Steganalysis with Shared Normalization

Deep learning based image steganalysis has attracted increasing attentions in recent years. Several Convolutional Neural Network (CNN) models have been proposed and achieved state-of-the-art performances on detecting steganography. In this paper, we explore an important technique in deep learning, the batch normalization, for the task of image steganalysis. Different from natural image classifi...

متن کامل

An extended feature set for blind image steganalysis in contourlet domain

The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...

متن کامل

CNN Based Adversarial Embedding with Minimum Alteration for Image Steganography

Historically, steganographic schemes were designed in a way to preserve image statistics or steganalytic features. Since most of the state-of-the-art steganalytic methods employ a machine learning (ML) based classifier, it is reasonable to consider countering steganalysis by trying to fool the ML classifiers. However, simply applying perturbations on stego images as adversarial examples may lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012